CRISPR基因组编辑

VIP ¥
基础会员价 ¥
原价 ¥
VIP专享价 ¥
原价 ¥
开通VIP 免费下载更划算
开通VIP 立减¥ 立即开通
升级个人VIP 再减¥ 立即升级
已优惠¥
正在参加“买1得2”活动
购买后可立即查看,无需等待!
购买后可立即开票
订阅
Although it is not present in the public’s mind, CRISPR is already recognized as one of the most significant discoveries in the world of bioscience over the last decade. This resulted in the Nobel Prize in Chemistry being awarded to the two scientists who did the decisive research on CRISPR: Jennifer Doudna and Emmanuelle Charpentier. CRISPR stands for clustered regularly interspaced short palindromic repeats. Often described as genetic scissors, CRISPR is a gene-editing technique that allows precise yet quick changes of gene sequences. Unwanted genetic snippets can be left out or even replaced by a new wanted snippet. The benefits of such a tool are far-reaching, and many scientists expect significant breakthroughs with the help of CRISPR in the years to come. The size of the global CRISPR genome editing market is estimated to exceed four billion U.S. dollars by the mid-2020s. How does CRISPR work? In the late 1980s, Japanese molecular biologists discovered unusual repeating clusters in bacterial DNA. Over the years, other scientists confirmed these appearances and named them CRISPR. During the early 2000s, it was found that bacteria use CRISPR systems to protect themselves from constant virus attacks. After a viral attack, bacteria chop off parts of the virus’ genetic information and store it within its own DNA, in so-called CRISPR spaces. Using this information, bacteria are able to create a specialized attack enzyme – called Cas9 (standing for CRISPR associated protein 9) – that fights the virus by neutralizing its DNA with the same chopping technique. In 2012, it was shown that this technique from bacteria could be transferred to almost any living organism, including plants, animals, and humans. Scientists discovered that they could artificially feed the Cas9 enzyme not only with viral information but with almost any information they wanted. Shortly after receiving information, Cas9 starts searching and chopping the genome accordingly. The latest genome editing technique – the most precise genetic scissors imaginable – was born. Huge potential in fighting diseases There is much excitement regarding CRISPR’s potential in the fight against diseases. The technique could allow scientists to detect disease-causing mutations in the genome, cut them out, and possibly replace them with more desirable information. It is especially convenient for many diseases that we know have genetic mutations , such as cancer. In 2020, CRISPR was used for the first time to treat two of the deadliest cancer types, increasing the survival rates by 80 and 30 percent, respectively. Furthermore, CRISPR could also help fight diseases indirectly. There are already experiments taking place to find out whether the method can reduce or eliminate mosquito-borne diseases . The genetic scissors are used to manipulate genes that are responsible for the insects’ fertility. The aim is to control the (in)fertility of a mosquito population and, as a result, put an end to diseases like malaria, which is still one of the most prevalent infectious diseases worldwide . Could CRISPR help to fight COVID-19? Despite the technique not being fully matured, CRISPR has already been used during the COVID-19 pandemic . Firstly, there are COVID-19 tests based on CRISPR technology that have the potential to deliver a faster, more accurate diagnosis. With its nucleotide-targeting ability, CRISPR can detect the presence of viral RNA. The latest trials on the test kits, which could be used at home assisted by a smartphone, showed extremely high accuracy rates. Secondly, with regard to potential COVID-19 vaccines and treatments , scientists working on CRISPR utilization in influenza viruses switched their focus to SARS-CoV-2. Trials have so far been conducted in human lung cells in solutions, but the next step would be to test treatments in an animal model against a live SARS-CoV-2 virus. Therefore, still in its infancy, CRISPR may not be able to assist in the COVID-19 crisis, but it is widely regarded as a mighty tool in fighting future pandemics. Gene editing creates ethical debate When it comes to discussions about CRISPR, one of the most extreme examples is its potential to manipulate unborn human lives. In 2018, there was an uproar within the scientific community when a Chinese doctor used CRISPR to ‘engineer’ babies born without receptors for the HI virus that causes AIDS . While many regard gene editing as revolutionary in treating and preventing diseases, there has been a widespread backlash against using the technique to ‘design’ babies . The predominant tone regarding the news from China in 2018 was that the act was disturbing and unethical. Many scientists state that it is still too early for trials in humans, while others call for clear restrictions on CRISPR research. Would you eat a ‘CRISPRed’ apple? Human medicine is not the only area where this mighty technique shows new ways. In fact, scientists from the food industry first discovered the functioning and the purpose of CRISPR-systems in the mid-2000s. Fast-forward to now, the benefits of this gene-editing tool for the agriculture industry and the food industry are potentially huge. Everything now seems possible: rice with higher yields, wheat without gluten, coffee plants that grow decaffeinated beans, or cows without horns. Apples that have been modified to prevent turning brown are already available in some U.S. stores. It is estimated that CRISPRed food, on a larger scale, will appear in stores in about five to 10 years. Many scientists hope that attitudes towards CRISPRed products do not replicate public opinion about genetically modified food products . While luck played its part in classic genetic modification (scientists did not know the part of the genome in which the manipulation would take place), the latest genome editing technology is very precise and more accurate to control. However, there is – and always should be – room for caution and discussion. This text provides general information.
二手电商行业数据主题包
PPT格式3633
订阅
二手电商行业数据
PPT格式3633
订阅
二手电商行业数据
PPT格式3633
订阅
二手电商行业数据
PPT格式3633
订阅
二手电商行业数据
添加行业 下载PPT

添加当前行业为会员指定行业

即可下载行业PPT

订阅
二手电商行业数据
替换行业 下载行业PPT

替换当前行业为会员指定行业

即可下载行业PPT

订阅
二手电商行业数据
替换行业 下载行业PPT

当前已无替换次数

点击联系客服获取更多次数

订阅

选择 行业并开通会员

即可浏览本主题和所选行业内所有数据!

前往会员中心
选择会员套餐并选择行业
完成支付,即可浏览此行业内所有相关数据以及主题集

升级会员套餐并选择

即可浏览本主题和所选行业内所有数据!

前往会员中心
选择会员套餐并选择行业
完成支付,即可浏览此行业内所有相关数据以及主题集

您已开通会员

可浏览此行业的主题与数据

您已开通会员

可浏览本主题和基础数据库内所有数据

开通任意会员套餐

即可浏览本主题和基础数据库内所有数据
主题数据集
CRISPR基因组编辑
说明:
购买后可永久获得本数据集;提供打包下载,无需逐条下载,方便快捷。
价格:
899
299
600
299
899
相关推荐
媒体引用
资质证书
热点数据图
本主题内的数据
数据主题包图表报告形式呈现本主题所有数据
本数据主题包包括 中国化妆品行业 主题下的 33条 数据包含总体概述、化妆品核心数据、典型企业等数据。
3633
PPT、PDF下载
数据来源
价格:
899
数据主题包图表报告形式呈现本主题所有数据
本数据主题包包括 中国化妆品行业 主题下的 33条 数据包含总体概述、化妆品核心数据、典型企业等数据。
3633
PPT、PDF下载
数据来源
您已开通此行业VIP,
可免费下载
数据主题包图表报告形式呈现本主题所有数据
本数据主题包包括 中国化妆品行业 主题下的 33条 数据包含总体概述、化妆品核心数据、典型企业等数据。
3633
PPT、PDF下载
数据来源
您已购买本数据主题包
数据主题包图表报告形式呈现本主题所有数据
本数据主题包包括 中国化妆品行业 主题下的 33条 数据包含总体概述、化妆品核心数据、典型企业等数据。
3633
PPT、PDF下载
数据来源
您未开通本行业,升级并开通可免费下载
其他有趣的统计数字
{isPay=0, isHaveRight=1, isStop=0, nodeStat=0, objId=113301776, is_end=1, name=与2031年全球CRISPR基因编辑市场规模预测, id=44686279, isNew=0, type=0, name_id=1365524}
与2031年全球CRISPR基因编辑市场规模预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301777, is_end=1, name=CRISPR基因编辑市场份额(2020-2031), id=44686280, isNew=0, type=0, name_id=1365525}
CRISPR基因编辑市场份额(2020-2031)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301778, is_end=1, name=CRISPR基因编辑市场份额预测(2019年与2030年), id=44686281, isNew=0, type=0, name_id=1365526}
CRISPR基因编辑市场份额预测(2019年与2030年)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301779, is_end=1, name=基因组测序领域的技术进展, id=44686282, isNew=0, type=0, name_id=1178352}
基因组测序领域的技术进展
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301780, is_end=1, name=临床医生对2031年前基因组测序未来应用的看法(按国家), id=44686283, isNew=0, type=0, name_id=1365527}
临床医生对2031年前基因组测序未来应用的看法(按国家)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301781, is_end=1, name=韩国CRISPR基因组编辑市场规模, id=44686284, isNew=0, type=0, name_id=1365528}
韩国CRISPR基因组编辑市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301782, is_end=1, name=全球人口排序市场份额(按细分), id=44686285, isNew=0, type=0, name_id=1365529}
全球人口排序市场份额(按细分)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301783, is_end=1, name=截至2021,全球顶尖CRISPR初创公司(按资金), id=44686286, isNew=0, type=0, name_id=1365530}
截至2021,全球顶尖CRISPR初创公司(按资金)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301784, is_end=1, name=国家卫生研究院2013-2022年人类基因组资金总额, id=44686287, isNew=0, type=0, name_id=1365531}
国家卫生研究院2013-2022年人类基因组资金总额
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301785, is_end=1, name=计算机图形和照片编辑软件安装基础共享2022(按产品), id=44686288, isNew=0, type=0, name_id=1365532}
计算机图形和照片编辑软件安装基础共享2022(按产品)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301786, is_end=1, name=临床医生对2031年前基因组测序未来应用的看法, id=44686289, isNew=0, type=0, name_id=1365533}
临床医生对2031年前基因组测序未来应用的看法
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301787, is_end=1, name=Bioneer Corporation 2015-2021营业利润, id=44686290, isNew=0, type=0, name_id=1365534}
Bioneer Corporation 2015-2021营业利润
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301788, is_end=1, name=和2031年全球癌症微生物组测序市场规模, id=44686291, isNew=0, type=0, name_id=1365535}
和2031年全球癌症微生物组测序市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301789, is_end=1, name=和2031年按应用划分的全球癌症微生物组测序市场份额, id=44686292, isNew=0, type=0, name_id=1365536}
和2031年按应用划分的全球癌症微生物组测序市场份额
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301790, is_end=1, name=2015-2021 ToolGen收入, id=44686293, isNew=0, type=0, name_id=1365537}
2015-2021 ToolGen收入
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301791, is_end=1, name=Bioneer Corporation 2015-2021收入, id=44686294, isNew=0, type=0, name_id=1365538}
Bioneer Corporation 2015-2021收入
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301792, is_end=1, name=Bioneer Corporation 2021的收入(按行业), id=44686295, isNew=0, type=0, name_id=1365539}
Bioneer Corporation 2021的收入(按行业)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301793, is_end=1, name=2017-2021美国记录/测序软件零售额, id=44686296, isNew=0, type=0, name_id=1365540}
2017-2021美国记录/测序软件零售额
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301794, is_end=1, name=2017-2021在美国批发记录/测序软件, id=44686297, isNew=0, type=0, name_id=1365541}
2017-2021在美国批发记录/测序软件
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301795, is_end=1, name=2021,编辑印度影响力人士经常使用的应用程序, id=44686298, isNew=0, type=0, name_id=1365542}
2021,编辑印度影响力人士经常使用的应用程序
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301796, is_end=1, name=全球全基因组测序单位成本, id=44686299, isNew=0, type=0, name_id=1365543}
全球全基因组测序单位成本
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301797, is_end=1, name=和2023年全球DNA测序市场规模, id=44686300, isNew=0, type=0, name_id=150161}
和2023年全球DNA测序市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301798, is_end=1, name=全球DNA下一代测序市场收入, id=44686301, isNew=0, type=0, name_id=1365544}
全球DNA下一代测序市场收入
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301799, is_end=1, name=全球下一代测序市场份额预测技术2024, id=44686302, isNew=0, type=0, name_id=150169}
全球下一代测序市场份额预测技术2024
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301800, is_end=1, name=全球下一代测序市场规模预测, id=44686303, isNew=0, type=0, name_id=1365545}
全球下一代测序市场规模预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301801, is_end=1, name=全球下一代测序市场份额预测(按产品), id=44686304, isNew=0, type=0, name_id=1365546}
全球下一代测序市场份额预测(按产品)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301802, is_end=1, name=全球收入最高的测序公司, id=44686305, isNew=0, type=0, name_id=150130}
全球收入最高的测序公司
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301803, is_end=1, name=CRISPR专利申请数量排名前三的国家, id=44686306, isNew=0, type=0, name_id=1365547}
CRISPR专利申请数量排名前三的国家
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301804, is_end=1, name=全球全外显子组测序市场收入, id=44686307, isNew=0, type=0, name_id=1359210}
全球全外显子组测序市场收入
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301805, is_end=1, name=全球CRISPR专利的顶级所有者, id=44686308, isNew=0, type=0, name_id=1365548}
全球CRISPR专利的顶级所有者
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301806, is_end=1, name=全球CRISPR专利申请总数, id=44686309, isNew=0, type=0, name_id=1365549}
全球CRISPR专利申请总数
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301807, is_end=1, name=按行业划分的全球CRISPR专利申请数量, id=44686310, isNew=0, type=0, name_id=1365550}
按行业划分的全球CRISPR专利申请数量
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301808, is_end=1, name=韩国编辑个人文档的云服务使用率(按年龄组), id=44686311, isNew=0, type=0, name_id=1358813}
韩国编辑个人文档的云服务使用率(按年龄组)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301809, is_end=1, name=和2024年全球下一代测序市场规模, id=44686312, isNew=0, type=0, name_id=1359019}
和2024年全球下一代测序市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301810, is_end=1, name=韩国ToolGen的投资价值, id=44686313, isNew=0, type=0, name_id=1365551}
韩国ToolGen的投资价值
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301811, is_end=1, name=全球区块链在基因组学中的市场规模,按服务预测,2029年, id=44686314, isNew=0, type=0, name_id=1359742}
全球区块链在基因组学中的市场规模,按服务预测,2029年
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301812, is_end=1, name=英国青少年在社交媒体上编辑的自拍分享, id=44686315, isNew=0, type=0, name_id=1365552}
英国青少年在社交媒体上编辑的自拍分享
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301813, is_end=1, name=和2025年全球视频编辑软件市场规模, id=44686316, isNew=0, type=0, name_id=1359413}
和2025年全球视频编辑软件市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301814, is_end=1, name=人类基因组科学:2011-2014年收入预测, id=44686317, isNew=0, type=0, name_id=1365553}
人类基因组科学:2011-2014年收入预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301815, is_end=1, name=和2031年全球药物基因组学服务市场份额预测, id=44686318, isNew=0, type=0, name_id=1365554}
和2031年全球药物基因组学服务市场份额预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301816, is_end=1, name=英国对未来遗传学的态度份额, id=44686319, isNew=0, type=0, name_id=1365555}
英国对未来遗传学的态度份额
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301817, is_end=1, name=全球NGS信息学和临床基因组学市场规模预测, id=44686320, isNew=0, type=0, name_id=1365556}
全球NGS信息学和临床基因组学市场规模预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301818, is_end=1, name=终端用户全球NGS信息学和临床基因组学市场, id=44686321, isNew=0, type=0, name_id=1365557}
终端用户全球NGS信息学和临床基因组学市场
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301819, is_end=1, name=第一季度部分美国生物技术和药物公司的毛利率, id=44686322, isNew=0, type=0, name_id=1177999}
第一季度部分美国生物技术和药物公司的毛利率
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301820, is_end=1, name=美国设计、编辑和渲染软件出版收入, id=44686323, isNew=0, type=0, name_id=1365558}
美国设计、编辑和渲染软件出版收入
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301821, is_end=1, name=瑞士生物技术公司:2016-2021利润, id=44686324, isNew=0, type=0, name_id=1365559}
瑞士生物技术公司:2016-2021利润
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301822, is_end=1, name=和2031年全球药物基因组学服务市场规模预测, id=44686325, isNew=0, type=0, name_id=1359189}
和2031年全球药物基因组学服务市场规模预测
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301823, is_end=1, name=和2025年全球NGS样品制备市场规模, id=44686326, isNew=0, type=0, name_id=1359743}
和2025年全球NGS样品制备市场规模
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301824, is_end=1, name=和2025年全球NGS样品制备市场份额(按产品), id=44686327, isNew=0, type=0, name_id=1359744}
和2025年全球NGS样品制备市场份额(按产品)
{isPay=1, isHaveRight=0, isStop=0, nodeStat=0, objId=113301825, is_end=1, name=认为胚胎基因编辑可用于特定目的的加拿大人2019, id=44686328, isNew=0, type=0, name_id=1365560}
认为胚胎基因编辑可用于特定目的的加拿大人2019
展开全部数据